
  

  

Abstract—Applying machine learning (ML) methods on 

electronic health records (EHRs) that accurately predict the 

occurrence of a variety of diseases or complications related to 

medications can contribute to improve healthcare quality. 

EHRs by nature contain multiple modalities of clinical data 

from heterogeneous sources that require proper fusion strategy. 

The deep neural network (DNN) approach, which possesses the 

ability to learn classification and feature representation, is 

well-suited to be employed in this context. In this study, we 

collect a large in-hospital EHR database to develop analytics in 

predicting 1-year gastrointestinal (GI) bleeding hospitalizations 

for patients taking anticoagulants or antiplatelet drugs. A total 

of 815,499 records (16,757 unique patients) are used in this 

study with three different available EHR modalities (disease 

diagnoses, medications usage, and laboratory testing 

measurements). We compare the performances of 4 deep 

multimodal fusion models and other ML approaches. NNs result 

in higher prediction performances compare to random forest 

(RF), gradient boosting decision tree (GBDT), and logistic 

regression (LR) approaches. We further demonstrate that deep 

multimodal NNs with early fusion can obtain the best GI 

bleeding predictive power (area under the receiver operator 

curve [AUROC] 0.876), which is significantly better than the 

HAS-BLED score (AUROC 0.668). 

I. INTRODUCTION  

In-hospital EHRs are valuable data sources of the existing 
healthcare system, and ML techniques are a set of highly 
effective data-driven predictive algorithms capable of learning 
powerful hidden relationship between the desired outcome 
and a variety of clinical variables derived from large databases. 
The longitudinal nature of EHR along with its variety in the 
health-related information offers an enormous possibility in 
deploying ML techniques for clinical practices. These 
routinely collected in-hospital EHRs could provide high 
performing predictive analytics for health applications such as 
evaluation of treatment efficacy or complications. It could be 
applied for a wide range of diseases that would positively 
impact a patient’s clinical outcomes directly. 

Anticoagulants and antiplatelet drugs are usually used in 
the prevention and treatment of ischemic stroke or heart 
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diseases. The use of these drugs and their complications (such 
as GI bleeding) are likely to increase as the population ages. 
Hence, accurately assessing the risks of GI bleeding 
occurrences in patients taking these medications is important 
as it would help physicians to properly balance the trade-off 
between the benefit of treatments and the risk of bleeding. All 
of the current clinical scores used for predicting GI bleeding 
events, such as the QBleed algorithms (using 21 variables with 
an AUROC 0.77 [1]), the HAS-BLED score (using 9 variables 
with an AUROC 0.72 [2]) or a recently developed model by 
Shimomura et al.  (using 5 variables with an AUROC 0.65 [3]), 
showed only moderate predictive power. In this work, our aim 
is to develop GI bleeding predictive algorithms from 
in-hospital EHRs using techniques of ML and DNN. 

In-hospital EHRs cover data from multiple information 
domains, and the types of these records vary in structures. 
Additional challenge is that this large amount of structured 
and semi-structured data produces thousands of potential 
predictive variables. The use of DNNs, which automatically 
learn complex feature relationships at multiple levels of 
abstraction [4], allows us to address challenges of modeling 
many variables simultaneously to obtain high AUROC 
performances. For example, researchers have applied deep 
learning methods to derive predictive algorithms with 
accuracy beyond current clinical scores in applications such as 
prediction of stroke [5,6,7] and inpatient mortality [8]. In our 
previous work, we have demonstrated that using DNNs on 
electronic medical claims can accurately predict stroke events, 
reaching a state-of-the art AUROC 0.92 [7].  

Furthermore, an advantage of DNN technique is its ability 
to integrate multimodal data sources of heterogeneous types 
that can jointly be optimized to achieve further improved 
prediction accuracy. Specifically, there are two strategies 
commonly used for multimodal fusion: early fusion and late 
fusion. The early fusion approach learns relationships between 
features and class discrimination to model the interaction 
between modalities. On the other hand, late fusion handles 
these modalities as independent streams until the end [9]. 

 In this study, we apply DNN with multimodal fusion 
strategy on a large in-hospital EHR database to derive 
analytics for GI bleeding hospitalizations prediction, 
specifically targeting for patients that have previously been 
treated with anticoagulants or antiplatelet drugs. The 
performances of different multimodal fusion strategies and 
other conventional ML algorithms are compared in this work. 
Our results show the benefit of early fusion approach 
compared to late fusion method, and the deep multimodal 
fusion network outperform single modal strategy. Finally, 
DNNs with early fusion strategy are capable of obtaining the 
highest predictive accuracy (AUROC 0.876) for 1-year GI 
bleeding events prediction. 
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TABLE 1.  INFORMATION OF THE STUDY COHORT  

 All records 

Records in 

training time 

period 

Records in 

testing time 

period 

Time period 2006-2015 2007-2012 2014 

No of patients 16,757 14,406 11,640 

No of records 815,499 551,156 127,929 

No of records with 
GI bleeding events 

4,111 2,623 720 

II. METHODS  

A. Database and study population 

The database for this study is extracted from the EHRs of 
Taichung Veterans General Hospital. All patients who used 
anticoagulants or antiplatelet drugs (Anatomical Therapeutic 
Chemical code: B01AA03, B01AE07, B01AF02, B01AF01, 
B01AC06, B01AC04, B01AC07, B01AC05, B01AC23, 
B01AC24) more than 4 months during 2006 to 2015 were 
identified from the EHR system of the hospital. The database 
contains de-identified EHR data from 23,631 patients treated 
in the inpatient and outpatient departments (with a total of 
46,389 inpatient records and 5,505,898 outpatient records). 
These records contain information of patient’s demographics, 
disease diagnoses, medications use, and laboratory testing 
measurements. The Institutional Review Board of Taichung 
Veterans General Hospital institutional approved the study. 

We design a cohort for predicting 1-year GI bleeding 
hospitalizations. Patients aged 18 to 90 years are identified 
from the outpatient database. Patients are not eligible for 
enrollment if they had any types of GI bleeding in the past 1 
year before enrollment or had an insufficient follow-up time 
period (1 year before enrollment and 1 year follow-up period 
after enrollment). We further remove records that have 
inadequate numbers of available clinical variables. Following 
this exclusion criteria, our final dataset includes a total of 
16,757 patients (815,499 records, see Table 1). In order to 
perform 5-fold cross validation properly, these patients are 
randomly divided into 5 groups. In order to validate the 
real-world use of these ML models, records of each group are 
further divided into 2 subgroups with non-overlapping time 
periods: records in training time period (2007-2012, a total of 
551,156 records) and records in testing time period (2014, a 
total of 11,640 records).   

B. Outcome definition 

In this work, our aim is to predict the risks of GI bleeding 
occurrences in patients using anticoagulants or antiplatelet 
drugs. To ensure the diagnostic validity, the outcome event is 
defined as any GI bleeding (ICD-9-CM code: 530.7, 531.0, 
531.2, 531.4, 531.6, 532.0, 532.2, 532.4, 532.6, 533.0, 533.2, 
533.4, 533.6, 534.0, 534.2, 534.4, 534.6, 535.01, 535.11, 
535.21, 535.31, 535.41, 535.51, 535.61, 535.71, 537.83, 
537.84, 562.02, 562.03, 562.13, 569.3, 569.85, 578) recorded 
in the hospital discharge diagnoses in the inpatient database. 

C. Feature engineering 

We utilize data from the EHRs within 1 years prior to our 
enrollment to generate features as input to DNN. We first 
gather the following measurements from the records of an 
individual patient at the enrollment time: 

TABLE 2.  A TOTAL OF 4,050 FEATURES EXTRACTED 

 

• Demographic measurements: gender and age. 

• Disease diagnosis measurements: A list of diagnoses 
is classified by the ICD-10-CM codes and mapped 
into binary values (914 in total). In the records, the 
diagnoses of diseases were coded using the 
ICD-9-CM code. We convert the ICD-9-CM code to 
ICD-10-CM code using the code-converting sheet 
provided by the National Health Insurance Bureau as 
previously done in our prior works [5,6,7] 

• Medication usage measurements: A list of relevant 
medications (which may cause or prevent GI bleeding, 
e.g.  proton-pump inhibitors, steroid, and painkillers) 
is mapped into binary values (18 in total). 

• Laboratory biomarker measurements: A total of 16 
laboratory measurements of widely used biomarkers 
are recorded as continuous values. 

In order to generate the final feature vector that captures 
both the clinical measurements and temporal information, we 
utilize time stamp of these measurements. We extract a total of 
4,050 features from the dataset (Table 2). These features can 
be abstracted as combinations of the measurement dimension 
and the temporal dimension. The temporal dimension that we 
use covers 4 time periods (1 month, 3 months, 6 months and 1 
year). For biomarker measurements, we fill in a normal 
laboratory value in each time period (to avoid missing value) 
before calculating the mean, median, standard deviation, 
maximum, and minimum values within the selected time 
period (for example, mean value of hemoglobin levels in the 
past 1 year). In the medication use measurements, we compute 
the total number of specific medication classes recorded 
during these time periods. In the disease diagnosis 
measurements, we use the total number of times that a specific 
diagnosis is made during these time periods. We additionally 
perform feature selection to identify the most discriminative 
features as a data preprocessing before training our models. 
We use simple Pearson correlation method to select the most 
relevant 8, 16, 32, and 64 features to perform experiments.  

D. Single modal architecture  

In each measurement domain (disease, medication, and 
biomarker), we compare the performances of 3 ML 
approaches (using the scikit-learn version 0.18.0 packages) 
with 3 NN models (using the Keras toolbox): 

• Random Forest (RF): using 100 trees with Gini index 
as the criteria for learning the tree splitting. 

Measurement 

Dimension 

Temporal 

Dimension 
No of Features 

Demographics: 

gender and age 

 2 

Disease diagnosis: 
914 in total 

In past 1 month 

In past 3 months 
In past 6 months 

In past 1 year 

(4 in total) 

3,656 

Medication use: 

18 in total 

72 

Laboratory biomarker: 

16 in total 

64 mean, 64 median, 
64 standard deviation, 

64 maximum, and 

64 minimum values 
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Figure 1. The structure of SL-NN and deep multimodal fusion models. 

• Gradient Boosted Decision Tree (GBDT): using 100 
boosted decision trees with binomial loss function.  

• Logistic Regression (LR): using L2-regularization 
with strength 1.0. 

• Single hidden Layer NN (SL-NN, Figure 1A): using a 
multilayer feed-forward perceptron with one hidden 
layer. The number of neurons per hidden layer is 128, 
and hyperbolic tangent is used as the activation 
function. We use dropout with a retention rate of 50% 
for hidden units. During the training process, the 
parameters of the model are randomly initialized. The 
final layer is trained to minimize cross entropy loss 
between the output and the true labels. 

• 3-Layer NN (3L-NN): with 3 fully connected hidden 
layers. Other architecture is the same as SL-NN. 

• 5-Layer NN (5L-NN): with 5 fully connected hidden 
layers. Other architecture is the same as SL-NN. 

E. Multimodal fusion strategies  

Early Fusion: The extracted features are combined into a 
single representation. This fusion scheme integrates unimodal 
features representations in the initial hidden layers of NN.  

• 3-Layer NN with Early Fusion (3L-NN-EF, Figure 
1B): with three 128-dimensional hidden layers. Other 
architecture is the same as SL-NN. 

• 5-Layer NN with Early Fusion (5L-NN-EF, Figure 
1C): with five 128-dimensional hidden layers. Other 
architecture is the same as SL-NN. 

Late Fusion: The late fusion approaches learn representation 
separately from each unimodal features, and then combine 
these learned unimodal representations into a multimodal 
representation at the layers prior to the final softmax output. 

TABLE 3: THE PERFORMANCES (AUROC) OF MODELS TRAINING WITH DISEASE 

DOMAIN INFORMATION 

No of features 8 16 32 64 

RF 0.565 0.544 0.608 0.565 

GBDT 0.537 0.534 0.474 0.552 

LR 0.659 0.761 0.758 0.769 

SL-NN 0.687 0.765 0.768 0.789 

3L-NN 0.700 0.766 0.772 0.793 

5L-NN 0.751 0.766 0.772 0.796 
 

• 3-Layer NN with Late Fusion (3L-NN-LF, Figure 1D): 
using a neural network with two 64-dimensional 
hidden layers for each domain features, follow-by one 
fully connected 128-dimensional hidden layer. 

• 5-Layer NN with Late Fusion (5L-NN-LF, Figure 1E): 
using a neural network with three 64-dimensional 
hidden layers for each domain features, follow-by two 
layers of fully connected 128-dimensional layer units. 

Experimental procedures 

In this study, we examine our GI bleeding prediction task 
performance of each model using 5-fold subject independent 
cross validation. In each cross validation fold, records (in 
training time period) from 80% of patients are used as training 
sets and records (in testing time period) from the rest 20% as 
testing sets. In order to speed up the training process, we apply 
a simple normalization approach by scaling the feature values 
to a range between 0 and 1. Down-sampling is performed to 
guarantee an almost identical class distribution between 
bleeding and non-bleeding cases. The optimization algorithm 
used to train the network is based on RMSprop. We also 
conduct additional experiments by increasing the selected 
features amount (from 8, 16, 32, to 64 features) to examine the 
effect of the number of features have on our proposed 
approaches. We report the AUROC as the measure of 
performances of these algorithms. 

III. RESULTS 

Our study includes a total of 16,757 unique patients with 
815,499 records. The average age is 65.6 years and 59.2% 
records come from male patients. A total of 4,111 records 
have 1-year GI bleeding hospitalization events. The event rate 
is 0.50% (4,111/815,499) per record. Table 1 shows the 
numbers of patients and records in training and testing time 
periods. There are 551,156 records in the training time period 
(2007-2012), and 127,929 records in the testing time period 
(2014). The event rate is 0.47% (2,623/551,156) and 0.56% 
(720/127,929) per record in the training time period and 
testing time period, respectively. A total of 4,050 features are 
generated from the datasets (3,656 features for disease domain, 
72 features for medication domain, and 320 for biomarker 
domain, see Table 2). After feature selection, we select 8, 16, 
32, and 64 features for the development of models.  

The performances of 6 single modal approaches (RF, 
GBDT, LR, SL-NN, 3L-NN and 5L-NN) are compared with 
different number of features used. Table 3 shows the 
performances of these models trained with disease domain. 
The 3L-NN and 5L-NN obtain the highest AUROCs when 
training with 64 features (0.793 and 0.796, respectively). 
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TABLE 4: THE PERFORMANCES (AUROC) OF MODELS TRAINING WITH 

MEDICATION DOMAIN INFORMATION  

No of features 8 16 32 64 

RF 0.593 0.591 0.643 0.643 

GBDT 0.672 0.672 0.695 0.722 

LR 0.685 0.708 0.716 0.719 

SL-NN 0.727 0.750 0.762 0.744 

3L-NN 0.730 0.755 0.761 0.755 

5L-NN 0.729 0.750 0.755 0.743 
 

Table 4 shows the performances of models training with 
medication domain information. The 3L-NN and 5L-NN have 
higher AUROCs than other models while training with 8 and 
16 features. Meanwhile, the SL-NN and 3L-NN achieve the 
highest AUROCs while training with 32 features (0.762 and 
0.761). Table 5 shows the performances of models training 
with biomarker domain information. The 3L-NN and 5L-NN 
obtain the highest AUROCs while training with 16 features 
(0.853 and 0.854). Overall, NNs obtain higher AUROC values 
compared to RF, GBDT and LR. The 3L-DNN has the highest 
predictive performance, followed by the 5L-DNN, and SL-NN 
methods. These findings also indicate that biomarker domain 
provides the most information for GI bleeding prediction than 
disease or medication domains. 

Table 6 shows the disease prediction performances of 
models training with different multimodal fusion strategies 
(disease, medication, and biomarker domains) when using 
different number of features. Overall, the early fusion models 
(3L-NN-EF and 5L-NN-EF) have higher AUROCs than other 
approaches. The 3L-NN-EF and 5L-NN-EF models obtain the 
highest AUROCs while training with 16 features from each 
domain (0.872 and 0.876), which are significantly higher than 
the HAS-BLED score (AUROC 0.668) or model proposed by 
Shimomura (AUROC 0.633) in our testing datasets. Early 
fusion is slightly better than late fusion approach. Of noted, 
most conventional ML models (GBDT, LR, and NNs) show a 
degradation when using too many correlated features (i.e., a 
decrease in accuracy when training with 64 features). 

IV. DISCUSSION  

In summary, we demonstrate that DNNs with early fusion 
technique outperform late fusion and other ML approaches. 
An encouraging AUROC of 0.876 is achieved by using 
5L-NN-EF. Our results also show that performances of NNs 
are superior to that of RF, GBDT, and LR in both single modal 
and multimodal condition. Using more feature dimensions 
does not obtain a higher AUROC performance in this study. 

TABLE 5: THE PERFORMANCES (AUROC) OF MODELS TRAINING WITH 

BIOMARKER DOMAIN INFORMATION  

No of features 8 16 32 64 

RF 0.734 0.675 0.710 0.639 

GBDT 0.762 0.761 0.693 0.673 

LR 0.848 0.847 0.838 0.823 

SL-NN 0.846 0.848 0.839 0.839 

3L-NN 0.850 0.853 0.843 0.844 

5L-NN 0.854 0.853 0.845 0.846 

TABLE 6: THE PERFORMANCES (AUROC) OF MODELS TRAINING WITH 

MULTIMODAL INFORMATION 

No of features  

in each domain 
8 16 32 64 

RF 0.653 0.601 0.666 0.713 

GBDT 0.670 0.697 0.747 0.743 

LR 0.727 0.808 0.812 0.765 

SL-NN 0.834 0.868 0.866 0.864 

3L-NN-EF 0.855 0.872 0.871 0.865 

5L-NN-EF 0.864 0.876 0.873 0.865 

3L-NN-LF 0.850 0.867 0.867 0.855 

5L-NN-LF 0.854 0.860 0.862 0.853 
 

Interactions between feature factors may limit the 
performance of these ML models. We demonstrate that DNNs 
can leverage implicit correlations among features in different 
modalities in EHRs. The disadvantage of the late fusion 
approach may result from loss of information when learning 
each feature representation separately. In the task of predicting 
GI bleeding events, the information of three domains are 
complementary to each other. These underlying relationship 
between these modalities may play a role in the overall 
improvement of the outcome prediction.  

V. CONCLUSIONS  

In this evaluation of applying ML on in-hospital EHRs, 
algorithms based on DNNs with early fusion achieve high 
AUROCs for prediction of 1-year GI bleeding hospitalizations 
and outperform the commonly used HAS-BLED score. 
Further prospective research is necessary to understand the 
potential impact of our algorithms on healthcare quality. 
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